Bioconvective gyrotactic microorganisms in third-grade nanofluid flow over a Riga surface with stratification: An approach to entropy minimization

Author:

Loganathan Karuppusamy1,Jain Reema1,Eswaramoorthi S.2,Abbas Mohamed34,Alqahtani Mohammed S.56

Affiliation:

1. Department of Mathematics and Statistics, Manipal University Jaipur , Jaipur-303007 , Rajasthan , India

2. Department of Mathematics, Dr. N.G.P. Arts and Science College , Coimbatore , Tamilnadu , India

3. Research Center for Advanced Materials Science (RCAMS), King Khalid University , Postcode 9004, Zip code 61413 , Abha , Saudi Arabia

4. Electrical Engineering Department, College of Engineering, King Khalid University , Abha 61421 , Saudi Arabia

5. Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University , Abha 61421 , Saudi Arabia

6. BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester , Leicester , LE1 7RH , UK

Abstract

Abstract Interest in the thermal effects of nanofluid (NF) has increased recently due to the use of nanocomposites to magnify the thermal conductivity of conventional liquids and so boost the heat transit phenomena. Based on this fundamental concept, the current study inspects the thermal advanced third-grade fluid flow with nanocomposites with an extended surface and the inclusion of stratification, non-Fourier heat flux, mass flux, and radiation. Buongiorno’s NF model is employed to observe the thermophoresis and Brownian motion properties. The gyrotactic microorganisms, which are connected to the bioconvection phenomenon that intrigues most, are also considered to be present in the nanoparticles. The governing models are composed of partial differential equations; thereafter, the relevant transformations are applied to these equations to convert the structure into an ordinary differential model. These resultant models are solved by implementing the homotopy analysis method. It is explained in detail how the pertinent parameters are affecting the motion, temperature of fluid, nanocomposite volume, dynamic microbe density, skin friction rates, local Nusselt, and local Sherwood numbers. Applications for the flow of nanoparticles carrying gyrotactic microorganisms include enzyme biosensors, microfluidic devices, microbial fuel cells, and biotechnology.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3