Prediction and monitoring model for farmland environmental system using soil sensor and neural network algorithm

Author:

Song Tao1,Si Yulong1,Gao Jie1,Wang Wei2,Nie Congwei3,Klemeš Jiří Jaromír4

Affiliation:

1. School of Electronic Information Engineering, Hebei University of Technology, National Demonstration Center for Experimental (Electronic and Communication Engineering) Education, Hebei University of Technology , Tianjin 300401 , China

2. Innovation and Entrepreneurial Center, Hebei University of Technology , Tianjin 300401 , China

3. Information Technology Department, Hebei GongNuo Testing Technology Co., Ltd , Shijiazhuang 050200 , China

4. Sustainable Process Integration Laboratory – SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology – VUT Brno , Technická 2896/2 , 616 69 Brno , Czech Republic

Abstract

Abstract In this study, data fusion algorithm is used to classify the soil species and calibrate the soil humidity sensor, and by using edge computing and a wireless sensor network, farmland environment monitoring system with a two-stage calibration function of frequency domain reflectometer (FDR) is established. Edge computing is used in system nodes, including the saturation value of the soil humidity sensor, the calculated soil hardness, the calculation process of the neural network, and the model of soil classification. A bagged tree is adopted to avoid over-fitting to reduce the prediction variance of the decision tree. A decision tree model is established on each training set, and the C4.5 algorithm is adopted to construct each decision tree. After primary calibration, the root mean squared error (RMSE) between the measured and standard values is reduced to less than 0.0849%. The mean squared error (MSE) and mean absolute error (MAE) are reduced to less than 0.7208 and 0.6929%. The bagged tree model and backpropagation neural network are used to classify the soil and train the dynamic soil dataset. The output of the trained neural network is closer to the actual soil humidity than that of the FDR soil humidity sensor. The MAE, the MSE, and the RMSE decrease by 1.37%, 3.79, and 1.86%. With accurate measurements of soil humidity, this research shows an important guiding significance for improving the utilization efficiency of agricultural water, saving agricultural water, and formulating the crop irrigation process.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3