Automatic parametric fault detection in complex analog systems based on a method of minimum node selection

Author:

Bilski Adrian1,Wojciechowski Jacek2

Affiliation:

1. Faculty of Applied Informatics and Mathematics, Warsaw University of Life Sciences—SGGW, ul. Nowoursynowska 159, 02-776 Warsaw, Poland

2. Institute of Radioelectronics, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland

Abstract

Abstract The aim of this paper is to introduce a strategy to find a minimal set of test nodes for diagnostics of complex analog systems with single parametric faults using the support vector machine (SVM) classifier as a fault locator. The results of diagnostics of a video amplifier and a low-pass filter using tabu search along with genetic algorithms (GAs) as node selectors in conjunction with the SVM fault classifier are presented. General principles of the diagnostic procedure are first introduced, and then the proposed approach is discussed in detail. Diagnostic results confirm the usefulness of the method and its computational requirements. Conclusions on its wider applicability are provided as well.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference46 articles.

1. Aminian, F. and Modular, A.(2007). Fault-diagnostic system for analog electronic circuit using neural networks with wavelet transform as a preprocessor, IEEE Transactions on Instrumentation and Measurement56(5): 1546–1554.

2. Arabas, J. (2004). Lectures in Evolutionary Algorithms, WNT, Warsaw, (in Polish).

3. Bilski, A. (2013). Diagnostic of complex analog systems with parametric faults using support vector machines, in T. Kwater and B. Twaróg (Eds.), Computing in Science and Technology 2012/13, University of Rzeszow, Rzeszów, pp. 7–24.

4. Bilski, P. (2007). Automated diagnostic system using graph clustering algorithm and fuzzy logic method, 18th European Conference on Circuit Theory and Design 2007, Seville, Spain, pp. 779–782.

5. Bilski, P. (2011). Automated selection of kernel parameters in diagnostics of analog systems, Przegląd Elektrotechniczny87(5): 9–13.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3