Interpretable decision-tree induction in a big data parallel framework

Author:

Weinberg Abraham Itzhak1,Last Mark1

Affiliation:

1. Department of Software and Information Systems Engineering Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel

Abstract

Abstract When running data-mining algorithms on big data platforms, a parallel, distributed framework, such asMAPREDUCE, may be used. However, in a parallel framework, each individual model fits the data allocated to its own computing node without necessarily fitting the entire dataset. In order to induce a single consistent model, ensemble algorithms such as majority voting, aggregate the local models, rather than analyzing the entire dataset directly. Our goal is to develop an efficient algorithm for choosing one representative model from multiple, locally induced decision-tree models. The proposed SySM (syntactic similarity method) algorithm computes the similarity between the models produced by parallel nodes and chooses the model which is most similar to others as the best representative of the entire dataset. In 18.75% of 48 experiments on four big datasets, SySM accuracy is significantly higher than that of the ensemble; in about 43.75% of the experiments, SySM accuracy is significantly lower; in one case, the results are identical; and in the remaining 35.41% of cases the difference is not statistically significant. Compared with ensemble methods, the representative tree models selected by the proposed methodology are more compact and interpretable, their induction consumes less memory, and, as confirmed by the empirical results, they allow faster classification of new records.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference35 articles.

1. AlSabti, K., Ranka, S. and Singh, V. (1998). Clouds: Classification for large or out-of-core datasets, Conference on Knowledge Discovery and Data Mining, New York, NY, USA, pp. 2-8.

2. Amado, N., Gama, J. and Silva, F. (2001). Parallel implementation of decision tree learning algorithms, in P.10.1007/3-540-45329-6_4

3. Brazdil and A. Jorge (Eds.), Progress in Artificial Intelligence, Springer, Berlin/Heidelberg, pp. 6-13.

4. Amado, N., Gama, J. and Silva, F. (2003). Exploiting parallelism in decision tree induction, ECML/PKDDWorkshop on Parallel and Distributed Computing for Machine Learning, Cavtat/Dubrovnik, Croatia, pp. 13-22.

5. Andrzejak, A., Langner, F. and Zabala, S. (2013). Interpretable models from distributed data via merging of decision trees, IEEE Symposium on Computational Intelligence and Data Mining (CIDM), Savannah, GA, USA, pp. 1-9.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3