Exact null controllability, complete stabilizability and continuous final observability of neutral type systems

Author:

Rabah Rabah1,Sklyar Grigory2,Barkhayev Pavel3

Affiliation:

1. Research Institute of Communication and Cybernetics , IMT Atlantique , Mines-Nantes, 4 rue Alfred Kastler, BP 20722, 44307 Nantes , France

2. Institute of Mathematics , University of Szczecin , Wielkopolska 15, 70-451 Szczecin , Poland

3. Institute for Low Temperature Physics and Engineering , National Academy of Sciences , 47 Lenin Ave., 61103 Kharkiv , Ukraine

Abstract

Abstract For abstract linear systems in Hilbert spaces we revisit the problems of exact controllability and complete stabilizability (stabilizability with an arbitrary decay rate), the latter property being related to exact null controllability. We also consider the case when the feedback is not bounded. We obtain a characterization of complete stabilizability for neutral type systems. Conditions for exact null controllability of neutral type systems are discussed. By duality, we obtain a result about continuous final observability. Illustrative examples are given.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference41 articles.

1. Curtain, R.F., Logemann, H., Townley, S. and Zwart, H. (1997). Well-posedness, stabilizability, and admissibility for Pritchard–Salamon systems, Journal of Mathematical Systems, Estimation, and Control4(4): 493–496.

2. Curtain, R.F. and Zwart, H. (1995). An Introduction to Infinitedimensional Linear Systems Theory, Texts in Applied Mathematics, Vol. 21, Springer-Verlag, New York, NY.

3. Douglas, R.G. (1966). On majorization, factorization, and range inclusion of operators on Hilbert space, Proceedings of the American Mathematical Society17: 413–415.10.1090/S0002-9939-1966-0203464-1

4. Dusser, X. and Rabah, R. (2001). On exponential stabilizability of linear neutral systems, Mathematical Problems in Engineering7(1): 67–86.10.1155/S1024123X01001533

5. Guo, F., Zhang, Q. and Huang, F. (2003). Well-posedness and admissible stabilizability for Pritchard–Salamon systems, Applied Mathematical Letters16(1): 65–70.10.1016/S0893-9659(02)00145-3

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harmonic Modeling and Control;Lecture Notes in Control and Information Sciences;2024

2. Observability estimates for convection dominated tubular reactors governed by the convection-(diffusion)-reaction pde;2023 European Control Conference (ECC);2023-06-13

3. Optimal control problems without terminal constraints: The turnpike property with interior decay;International Journal of Applied Mathematics and Computer Science;2023

4. Harmonic Pole Placement;2022 IEEE 61st Conference on Decision and Control (CDC);2022-12-06

5. On exact controllability and complete stabilizability for linear systems;V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics;2021-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3