Exploring complex and big data

Author:

Stefanowski Jerzy1,Krawiec Krzysztof1,Wrembel Robert1

Affiliation:

1. Institute of Computing Science Poznań University of Technology, ul. Piotrowo 2, 60-965 Poznań , Poland

Abstract

Abstract This paper shows how big data analysis opens a range of research and technological problems and calls for new approaches. We start with defining the essential properties of big data and discussing the main types of data involved. We then survey the dedicated solutions for storing and processing big data, including a data lake, virtual integration, and a polystore architecture. Difficulties in managing data quality and provenance are also highlighted. The characteristics of big data imply also specific requirements and challenges for data mining algorithms, which we address as well. The links with related areas, including data streams and deep learning, are discussed. The common theme that naturally emerges from this characterization is complexity. All in all, we consider it to be the truly defining feature of big data (posing particular research and technological challenges), which ultimately seems to be of greater importance than the sheer data volume.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference53 articles.

1. Ahmadov, A., Thiele, M., Eberius, J., Lehner, W. and Wrembel, R. (2015). Towards a hybrid imputation approach using web tables, IEEE/ACM International Symposium on Big Data Computing (BDC), Limassol, Cyprus, pp. 21-30.

2. Bekkerman, R., Bilenko, M. and Langford, J. (2011). Scaling Up Machine Learning: Parallel and Distributed Approaches, Cambridge University Press, New York, NY.

3. Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S.E. and Widom, J. (2009). Swoosh: A generic approach to entity resolution, The VLDB Journal 18(1): 255-276. 10.1007/s00778-008-0098-x

4. Bayer, M.A. and Edjlali, R. (2014). Magic Quadrant for Data Warehouse Database Management Systems, Gartner Publications, Stamford, CT, https://www.gartner.com/doc/2678018/magic-quadrant-data-warehouse-database.

5. Beyer, M. and Laney, D. (2012). The Importance of “Big Data”: A Definition, Gartner Publications, Stamford, CT.

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3