A Probabilistic Method for Certification of Analytically Redundant Systems

Author:

Hu Bin1,Seiler Peter1

Affiliation:

1. Aerospace Engineering and Mechanics Department University of Minnesota, 107 Akerman Hall, 110 Union St. SE, Minneapolis, MN, USA

Abstract

Abstract Analytical fault detection algorithms have the potential to reduce the size, power and weight of safety-critical aerospace systems. Analytical redundancy has been successfully applied in many non-safety critical applications. However, acceptance for aerospace applications will require new methods to rigorously certify the impact of such algorithms on the overall system reliability. This paper presents a theoretical method to assess the probabilistic performance for an analytically redundant system. Specifically, a fault tolerant actuation system is considered. The system consists of dual-redundant actuators and an analytical fault detection algorithm to switch between the hardware components. The exact system failure rate per hour is computed using the law of total probability. This analysis requires knowledge of the failure rates for the hardware components. In addition, knowledge of specific probabilistic performance metrics for the fault detection logic is needed. Numerical examples are provided to demonstrate the proposed analysis method.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Air data fault detection and isolation for small UAS using integrity monitoring framework;NAVIGATION;2021-09

2. Reliability of Analytically Redundant Systems for Small Unmanned Aerial Systems;AIAA Scitech 2021 Forum;2021-01-04

3. A Fault Detection and Isolation Design for a Dual Pitot Tube Air Data System;2020 IEEE/ION Position, Location and Navigation Symposium (PLANS);2020-04

4. Reliability Analysis for Small Unmanned Air Vehicle with Algorithmic Redundancy;AIAA Scitech 2020 Forum;2020-01-05

5. Fault-Tolerant Design;Fault-Tolerant Design and Control of Automated Vehicles and Processes;2019-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3