Simultaneous State and Parameter Estimation Based Actuator Fault Detection and Diagnosis for an Unmanned Helicopter

Author:

Wu Chong12,Qi Juntong1,Song Dalei1,Qi Xin12,Han Jianda1

Affiliation:

1. State Key Laboratory of Robotics, Shenyang Institute of Automation Chinese Academy of Sciences, No. 114 Nanta Street, Shenyang, Liaoning Province, China

2. University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, China

Abstract

Abstract Simultaneous state and parameter estimation based actuator fault detection and diagnosis (FDD) for single-rotor unmanned helicopters (UHs) is investigated in this paper. A literature review of actuator FDD for UHs is given firstly. Based on actuator healthy coefficients (AHCs), which are introduced to represent actuator faults, a combined dynamic model is established with the augmented state containing both the flight state and AHCs. Then the actuator fault detection and diagnosis problem is transformed into a general nonlinear estimation one: given control inputs and the measured flight state contaminated by measurement noises, estimate both the flight state and AHCs recursively in each time-step, which is also known as the simultaneous state and parameter estimation problem. The estimated AHCs can further be used for fault tolerant control (FTC). Based on the existing widely used nonlinear estimation methods such as the unscented Kalman filter (UKF) and the extended set-membership filter (ESMF), three kinds of adaptive schemes (KF-UKF, MIT-UKF and MIT-ESMF) are proposed by our team to improve the actuator FDD performance. A comprehensive comparative study on these different estimation methods is given in detail to illustrate their advantages and disadvantages when applied to unmanned helicopter actuator FDD.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3