Construction of Algebraic and Difference Equations with a Prescribed Solution Space

Author:

Moysis Lazaros1,Karampetakis Nicholas P.1

Affiliation:

1. Department of Mathematics, Faculty of Sciences Aristotle University of Thessaloniki, 54124 , Thessaloniki , Greece

Abstract

Abstract This paper studies the solution space of systems of algebraic and difference equations, given as auto-regressive (AR) representations A(σ)β(k) = 0, where σ denotes the shift forward operator and A(σ) is a regular polynomial matrix. The solution space of such systems consists of forward and backward propagating solutions, over a finite time horizon. This solution space can be constructed from knowledge of the finite and infinite elementary divisor structure of A(σ). This work deals with the inverse problem of constructing a family of polynomial matrices A(σ) such that the system A(σ)β(k) = 0 satisfies some given forward and backward behavior. Initially, the connection between the backward behavior of an AR representation and the forward behavior of its dual system is showcased. This result is used to construct a system satisfying a certain backward behavior. By combining this result with the method provided by Gohberg et al. (2009) for constructing a system with a forward behavior, an algorithm is proposed for computing a system satisfying the prescribed forward and backward behavior.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference26 articles.

1. Antoniou, E., Vardulakis, A. and Karampetakis, N. (1998). A spectral characterization of the behavior of discrete time AR-representations over a finite time interval, Kybernetika34(5): 555–564.

2. Antoulas, A. and Willems, J. (1993). A behavioral approach to linear exact modeling., IEEE Transactions on Automatic Control38(12): 1776–1802.

3. Antsaklis, P.J. and Michel, A.N. (2006). Linear Systems, 2nd Edn., Birkhäuser, Boston, MA.

4. Bernstein, D.S. (2009). Matrix Mathematics. Theory, Facts, and Formulas, 2nd Edn., Princeton University Press, Princeton, NJ.

5. Campbell, S. (1980). Singular Systems of Differential Equations, Vol. 1, Research Notes in Mathematics, Pitman, London.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the algebraic structure of the Moore–Penrose inverse of a polynomial matrix;IMA Journal of Mathematical Control and Information;2021-02-13

2. On the exact modelling of linear systems;IMA Journal of Mathematical Control and Information;2019-08-29

3. ALGEBRAIC METHODS FOR THE CONSTRUCTION OF ALGEBRAIC-DIFFERENCE EQUATIONS WITH DESIRED BEHAVIOR;ELECTRON J LINEAR AL;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3