A comparison of hole-filling methods in 3D

Author:

Pérez Emiliano1,Salamanca Santiago1,Merchán Pilar1,Adán Antonio2

Affiliation:

1. Industrial Engineering School University of Extremadura, Avda. Elvas, 06006 Badajoz, Spain

2. Computer Science School University of Castilla–La Mancha, Paseo de la Universidad 4, 13071 Ciudad Real, Spain

Abstract

Abstract This paper presents a review of the most relevant current techniques that deal with hole-filling in 3D models. Contrary to earlier reports, which approach mesh repairing in a sparse and global manner, the objective of this review is twofold. First, a specific and comprehensive review of hole-filling techniques (as a relevant part in the field of mesh repairing) is carried out. We present a brief summary of each technique with attention paid to its algorithmic essence, main contributions and limitations. Second, a solid comparison between 34 methods is established. To do this, we define 19 possible meaningful features and properties that can be found in a generic hole-filling process. Then, we use these features to assess the virtues and deficiencies of the method and to build comparative tables. The purpose of this review is to make a comparative hole-filling state-of-the-art available to researchers, showing pros and cons in a common framework.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference64 articles.

1. Amenta, N., Bern, M. and Kamvysselis, M. (1998). A new Voronoi-based surface reconstruction algorithm, Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’98), Orlando, FL, USA, pp. 415-421.

2. Attene, M., Campen, M. and Kobbelt, L. (2013). Polygon mesh repairing: An application perspective, ACM Computing Surveys 45(2): 15:1-15:33.

3. Bajaj, C., Bernardini, F. and Xu, G. (1995). Automatic reconstruction of surfaces and scalar fields from 3D scans, Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’95), Los Angeles, CA, USA, pp. 109-118.

4. Barequet, G. and Sharir, M. (1995). Filling gaps in the boundary of a polyhedron, Computer-Aided Geometric Design 12(2): 207-229.

5. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C. and Taubin, G. (1999). The ball-pivoting algorithm for surface reconstruction, IEEE Transactions on Visualization and Computer Graphics 5(4): 349-359.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structured Light-Based 3D Reconstruction System with Triangular Mesh Hole Repair;Proceedings of the 15th International Conference on Digital Image Processing;2023-05-19

2. Repairing geometric errors in 3D urban models with kinetic data structures;ISPRS Journal of Photogrammetry and Remote Sensing;2022-10

3. Collaborative Virtual 3D Object Modeling for Mobile Augmented Reality Streaming Services over 5G Networks;IEEE Transactions on Mobile Computing;2022

4. Reconstruction of 3D digital heritage objects for VR and AR applications;Journal of Information and Telecommunication;2021-12-02

5. Surface reconstruction post-processing method for 3D- scanned objects;Journal of Physics: Conference Series;2021-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3