Algebraic generalization of Diffie–Hellman key exchange

Author:

Partala JuhaORCID

Abstract

AbstractThe Diffie–Hellman key exchange scheme is one of the earliest and most widely used public-key primitives. Its underlying algebraic structure is a cyclic group and its security is based on the discrete logarithm problem (DLP). The DLP can be solved in polynomial time for any cyclic group in the quantum computation model. Therefore, new key exchange schemes have been sought to prepare for the time when quantum computing becomes a reality. Algebraically, these schemes need to provide some sort of commutativity to enable Alice and Bob to derive a common key on a public channel while keeping it computationally difficult for the adversary to deduce the derived key. We suggest an algebraically generalized Diffie–Hellman scheme (AGDH) that, in general, enables the application of any algebra as the platform for key exchange. We formulate the underlying computational problems in the framework of average-case complexity and show that the scheme is secure if the problem of computing images under an unknown homomorphism is infeasible. We also show that a symmetric encryption scheme possessing homomorphic properties over some algebraic operation can be turned into a public-key primitive with the AGDH, provided that the operation is complex enough. In addition, we present a brief survey on the algebraic properties of existing key exchange schemes and identify the source of commutativity and the family of underlying algebraic structures for each scheme.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications

Reference168 articles.

1. Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation;Advances in Cryptology – CRYPTO 2014,2014

2. A public-key cryptosystem and a digital signature system based on the Lucas function analogue to discrete logarithms;Advances in Cryptology – ASIACRYPT’94,1995

3. Graph-induced multilinear maps from lattices;Theory of Cryptography – TCC 2015,2015

4. The XTR public key system;Advances in Cryptology – CRYPTO 2000,2000

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3