Phenylalanine: Its ˙OH and SO4˙⁻-Induced Oxidation and Decarboxylation. A Pulse Radiolysis and Product Analysis Study

Author:

Wang Degui1,Schuchmann Heinz-Peter1,von Sonntag Clemens1

Affiliation:

1. Max-Planck-Institut für Strahlenchemie, Stiftstraße 34, P. O. Box 101365, D-45413 Mülheim a. d. Ruhr

Abstract

Phenylamine has been oxidized by radiolytically generated hydroxyl and sulfate radicals, the ensuing intermediates and their reactions have been studied by pulse radiolysis and product analysis in the absence and presence of oxidants such as Fe(CN)6 3- and O2. Upon OH radical attack, hydroxycyclohexadienyl-type radicals are mainly formed while Η-abstraction reactions can be neglected. In the presence of Fe(CN)6 3- these radicals are for the most part oxidized to the corresponding tyrosines (80%), except for the ipso-OH-adduct radicals (≈ 20%). It is concluded that ˙OH-addition is almost random, but with a slight avoidance of the metaposition relative to the ortho-, para- and ipso-positions. Oxygen adds reversibly to the OH-adduct radicals (kf = 1.8 × 108 dm3 mol-1 s-1, kr = 5.4 × 104 s-1). In this case, tyrosine formation occurs by HO2˙-elimination. However, due to side reactions, tyrosine formation only reaches 52% of the OH radical yield. The tyrosine yield drops to 10% in the absence of an oxidant. Upon SO4˙⁻-attack, decarboxylation becomes a major process (33% of SO4˙⁻) alongside the production of tyrosines (43%). Here, with Fe(CN)6 3- as the oxidant the formation of p-Tyr (18.5%) and m-Tyr (16.5%) is preferred over o-Tyr formation (8.5%). It is believed that in analogy to other systems a radical cation is formed immediately upon SO4˙⁻-attack which either reacts with water under the formation of hydroxycyclohexadienyl-type (“OH-adduct”) radicals, or decarboxylates after intramolecular electron transfer. The radical cation can also arise indirectly through H+-catalysed water elimination from the ˙OH-adduct radicals. At pH 2 and a dose rate of 0.0046 Gy s-1 CO2 formation matches the OH radical yield when ˙OH is the attacking radical. Below pH 2, G(CO2) decreases with falling pH. This indicates the occurrence of another, unimolecular, pathway under these conditions competing effectively with decarboxylation. This appears to be a relatively slow deprotonation reaction of the carboxylprotonated phenylalanine radical cation which gives rise to the benzyl-type radical.

Publisher

Walter de Gruyter GmbH

Subject

General Chemistry

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3