Nonparametric bootstrap inference for the targeted highly adaptive least absolute shrinkage and selection operator (LASSO) estimator

Author:

Cai Weixin1ORCID,van der Laan Mark1

Affiliation:

1. Division of Biostatistics , University of California , Berkeley , USA

Abstract

Abstract The Highly-Adaptive least absolute shrinkage and selection operator (LASSO) Targeted Minimum Loss Estimator (HAL-TMLE) is an efficient plug-in estimator of a pathwise differentiable parameter in a statistical model that at minimal (and possibly only) assumes that the sectional variation norm of the true nuisance functions (i.e., relevant part of data distribution) are finite. It relies on an initial estimator (HAL-MLE) of the nuisance functions by minimizing the empirical risk over the parameter space under the constraint that the sectional variation norm of the candidate functions are bounded by a constant, where this constant can be selected with cross-validation. In this article we establish that the nonparametric bootstrap for the HAL-TMLE, fixing the value of the sectional variation norm at a value larger or equal than the cross-validation selector, provides a consistent method for estimating the normal limit distribution of the HAL-TMLE. In order to optimize the finite sample coverage of the nonparametric bootstrap confidence intervals, we propose a selection method for this sectional variation norm that is based on running the nonparametric bootstrap for all values of the sectional variation norm larger than the one selected by cross-validation, and subsequently determining a value at which the width of the resulting confidence intervals reaches a plateau. We demonstrate our method for 1) nonparametric estimation of the average treatment effect when observing a covariate vector, binary treatment, and outcome, and for 2) nonparametric estimation of the integral of the square of the multivariate density of the data distribution. In addition, we also present simulation results for these two examples demonstrating the excellent finite sample coverage of bootstrap-based confidence intervals.

Funder

National Institute of Allergy and Infectious Diseases

Publisher

Walter de Gruyter GmbH

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

Reference27 articles.

1. Bickel, PJ, Klaassen, CAJ, Ritov, Y, Wellner, J. Efficient and adaptive estimation for semiparametric models. Berlin Heidelberg New York: Springer; 1997.

2. Gill, RD, van der Laan, MJ, Wellner, JA. Inefficient estimators of the bivariate survival function for three models. Annales de l’Institut Henri Poincaré 1995;31:545–97.

3. van der Laan, MJ, Rubin, DB. Targeted maximum likelihood learning. Int J Biostat 2006;2:Article 11. https://doi.org/10.2202/1557-4679.1043.

4. van der Laan, MJ. Estimation based on case-control designs with known prevalance probability. Int J Biostat 2008;4:Article 17. https://doi.org/10.2202/1557-4679.1114.

5. van der Laan, MJ, Rose, S. Targeted learning: causal inference for observational and experimental data. Berlin Heidelberg New York: Springer; 2011.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3