Wechselwirkung pflanzlicher Wachstumshormone mit Membranen

Author:

Weigl Josef1

Affiliation:

1. Botanisches Institut der Technischen Hochschule Darmstadt

Abstract

A strong physical association of indoleacetic acid. 2.4-dichloro-phenoxyacetic acid, indolepropionic acid and indolebutyric acid with lecithin was found which might have physiological significance (regulation, polar mobility). The association is assumed to be mainly due to bonding between the complementary charged groups of the phospholipid and auxin molecules and to specific interaction of the more hydrophobic parts of the molecules. The following interactions were established: Lecithin dissolved in CCl4 moves indoleacetic acid and 2.4-dichloro-phenoxyacetic acid out of an aqueous phase. Cholesterol, long chain fatty acids and amines did not give this interaction with indoleacetic acid and 2.4-dichlorophenoxyacetic acid 4, 5. 1 mole lecithin was found to bind up to 0.8 mole indoleacetic acid. Cephalin and phosphatidylserin exhibit a weaker interaction. Indolepropionic acid and indolebutyric acid were found to compete with indoleacetic acid. There was no effective competition of benzoic acid, phenoxyacetic acid, phenylacetic acid, cholesterol and several fatty aids with indoleacetic acid for the binding sites on the lecithin molecule. 2,4-dichlorophenoxyacetic acid appears to be bound stronger than indoleacetic acid and phenoxyacetic acid. Indoleacetic acid and 2.4-dichlorophenoxyaetic acid were incorporated into swollen lecithin lamellae. Similar interactions are to be expected for other hormones and phospholipids. The lipoprotein structures of cell membranes may be visualized to interact even more specificly with growth hormones than our model system. It is suggested that interaction of hormones with membranes should be considered in theories on regulation. Experiments on ion permeability indicate an influence of indoleacetic acid on cell membranes.

Publisher

Walter de Gruyter GmbH

Subject

General Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3