Substratspiegel, Enzymaktivitäten und genetische Regulation nach Derepression in pflanzlichen Speichergeweben/ Substrate levels, enzymatic activities and genetic regulation after derepression in plant storage tissues

Author:

Kahl G.1,Lange H.1,Rosenstock G.1

Affiliation:

1. Botanisches Institut der Universität Frankfurt a. M.

Abstract

Differential derepression of the genome of potato tuber cells can be initiated by slicing the tissue into disks. The consequence of this procedure on the cells of the wound surface is dedifferentiation and cell division followed by redifferentiation to a suberized phellem cell. The drift of glucose-, glucose-1-phosphate-, glucose-6-phosphate-, fructose-6-phosphate- and 6-phospho-gluconatelevels has been determined in the derepressed tissue. With the exception of 6-phospho-gluconate all intermediates so far investigated showed a rise in concentration after derepression. This is interpreted as a consequence of altered enzymic activities which were estimated for phosphoglucomutase, hexokinase, phosphoglucoisomerase, gluco-6-phosphate- and 6-phosphogluconatedehydrogenase. The two dehydrogenases were activated after derepression, the activation represented a de-novo-synthesis, as was demonstrated with the inhibitors Actidione (translation) and p-Fluorophenyl-alanine (protein synthesis in general). Hexokinase and phosphoglucoisomerase were not severely affected by cutting the tissue. Phosphoglucomutase was degrated rapidly, the degradation being dependent on protein synthesis. The importance of an enhanced activity of the pentose phosphate shunt for the stressed cell is emphasized and the possibility of an alteration in the osmotic pressure within the cell and especially in the nucleus — a primary consequence of wounding — as a cause of derepression in potato tuber cells is discussed.

Publisher

Walter de Gruyter GmbH

Subject

General Chemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3