Organic electrochemistry: Synthesis and functionalization of β-lactams in the twenty-first century

Author:

Bortolami Martina1,Chiarotto Isabella1,Mattiello Leonardo1,Petrucci Rita1,Rocco Daniele1,Vetica Fabrizio2,Feroci Marta1

Affiliation:

1. Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University , via del Castro Laurenziano, 7, I-00161 , Rome , Italy

2. Department of Chemistry, Sapienza University , p.le Aldo Moro, 5, I-00185 , Rome , Italy

Abstract

Abstract Organic electrochemistry is a technique that allows for the heterogeneous redox reactions avoiding both the use of stoichiometric amounts of redox reagents and the resulting formation of stoichiometric by-products. In fact, the redox reagent in these reactions is the electron, which is naturally eco-friendly and produces no side compounds. It is therefore quite obvious that electrochemistry can be classified as a “green” technology. The use of this methodology in the synthesis of β-lactams is not a novelty, but the growing interest in this class of biologically active compounds, due to the discovery of new fields of application (after a moment of decrease in interest due to antibiotic resistance) has been a stimulus for the search for more efficient electrochemical ways to synthesize and transform β-lactams. Thus, this review deals with the twenty-first-century applications of electroorganic technique to the chemistry of β-lactams, by analyzing first the syntheses classified by the type of reactions (cyclization, cycloaddition, etc.) and then by manipulating the β-lactam structure, using it as a synthon. Lastly, the importance of this technique is demonstrated by a study of a pilot plant scale reduction of a cephalosporanic acid derivative to a commercially important antibiotic.

Publisher

Walter de Gruyter GmbH

Subject

Organic Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3