Ball-Type Dioxy-o-Carborane Bridged Cobaltphthalocyanine: Synthesis, Characterization and DFT Studies For Dye-Sensitized Solar Cells as Photosensitizer

Author:

Şener Sevil1

Affiliation:

1. Ege University, Aliaga Vocational School, 35800, İzmir- Turkey

Abstract

AbstractThe synthesis and spectroscopic characterization of an innovative ball-type cobalt metallophthalocyanine 4, bridged by four 1,2-bis(2-hydroxymethyl)-O-carborane (HMOC) 1 units, has been achieved. The synthesized compound 4 was characterized structurally and electronically using elemental analysis, UV-Vis absorption spectroscopy, FT-IR spectroscopy, MALDI-TOF mass spectrometry, EPR spectroscopy and magnetic susceptibility. The photovoltaic performance of the newly synthesized compound in dye-sensitized solar cells was investigated. In order to clarify the effect of dye-sensitization time on photovoltaic performance parameters, the sensitization time was varied from 12 to 60 h and the performance parameters were investigated. It was found that sensitization time had a strong effect on the main performance parameters. The best photovoltaic performance was achieved after sensitization for 36 h (short circuit current density, 5.41 mA cm−2; overall conversion efficiency, 3.42%). Computational UV-Vis absorption spectra of the molecule was calculated using time dependent density functional theory and was found consistent with measured UV-Vis spectra.

Publisher

Walter de Gruyter GmbH

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3