Optimization of Ohmic Heating of Fish Using Response Surface Methodology

Author:

Kumar Vishal1,Rajak Dinesh1,Alok 1,Jha Ajay Kumar1,Sharma P. D.1

Affiliation:

1. Department of Processing and Food Engineering, College of Agricultural Engineering, Rajendra Agricultural University, Pusa, Bihar, India

Abstract

Abstract Optimization of process variables for ohmic heating (OH) of fish steaks was done by response surface methodology according to Box–Behnken design. The low and high levels of the variables were 3 and 7 min for processing time; 55 and 75 V for applied voltage and 10 and 15 mm for product thickness. Responses studied comprised colour, temperature, hardness, water activity and organoleptic score. It was found that effects of time and applied voltage were significant on all responses. Optimum conditions (desirability = 0.820) obtained by numerical optimization were processing time, 5.75 min; voltage, 75 V and product thickness, 14.4 mm to achieve maximum colour variation, temperature and organoleptic score and lower hardness and water activity. Corresponding to the optimum conditions, the predicted value for temperature was 71.88°C, colour 49.85, hardness 1.125 kg, water activity 0.772 and overall acceptability 7.891.

Publisher

Walter de Gruyter GmbH

Subject

Engineering (miscellaneous),Food Science,Biotechnology

Reference41 articles.

1. The influence of field strength, sugar and solid content on electrical conductivity of strawberry products;J Food Process Eng,2003

2. Shape and conductivity effects in the ohmic heating of foods;Chem Eng Res Des,1989

3. Ohmic heating of Japanese white radish Raphanus sativus L;Int J Food Sci Technol,1995

4. Frequency and voltage effects on enhanced diffusion during moderate electric field (MEF) treatment;Innovative Food Sci Emerging Technol,2003

5. Use of OH for aseptic processing of food particulates;Food Technol,1992

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3