Simulating Continuous Time Production Flows in Food Industry by Means of Discrete Event Simulation

Author:

Bursi Fabio,Ferrara Andrea,Grassi Andrea,Ronzoni Chiara

Abstract

Abstract The paper presents a new framework for carrying out simulations of continuous-time stochastic processes by exploiting a discrete event approach. The application scope of this work mainly refers to industrial production processes executed on a continuous flow of material (e.g. food and beverage industry) as well as production processes working on discrete units but characterized by a high speed flow (e.g. automated packaging lines). The proposed model, developed adopting the Discrete EVent system Specification (DEVS) formalism, defines a single generalized base unit able to represent, by means of an event scheme generated by state changes, the base behaviors needed for the modeling of a generic manufacturing unit, that is, (i) breakdowns and repairs, (ii) speed and accumulation, and (iii) throughput time. Moreover, the possibility to keep trace of additional measures of parameters related to the process and the flowing material (i.e. temperature, concentration of pollutant, and so on) is also considered. Since these parameters can change over time in a continuous manner, a specific discretization approach has been introduced to avoid the need to integrate parameter variation functions over time.

Publisher

Walter de Gruyter GmbH

Subject

Engineering (miscellaneous),Food Science,Biotechnology

Reference40 articles.

1. The split system approach to managing time in simulations of hybrid systems having continuous and discrete event components;Nutaro;Simulation,2012

2. Generalized discrete event abstraction of continuous systems: GDEVS formalism;Giambiasi;Simul Modell Pract Theory,2006

3. Performance evaluation of two-machines line with multiple up and down states and finite buffer capacity;Tolio;In: Proceedings of the 8th International Conference on Stochastic Models of Manufacturing and Service Operations, Kusadasi, Turkey,2011

4. Analysis of multistation production systems with limited buffer capacity. Part I: The subsystem model;Yeralan;Math Comput Modell,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3