Preparation of Nano-curcumin with Enhanced Dissolution Using Ultrasonic-Assisted Supercritical Anti-solvent Technique

Author:

Zabihi Fatemeh,Xin Na,Jia Jingfu,Cheng Tao,Zhao Yaping

Abstract

Abstract Curcumin is the main gradient of “Turmeric” a famous Indian spice and food additive. The marvelous nutritional and medicinal effects of curcumin made it a good alternative to some conventional drugs and food flavoring or coloring materials. However, the low solubility of curcumin is a challenging hindrance which should be seriously addressed. In this work, we prepared nano-curcumin with enhanced aqueous dispersion and dissolution rate. Ultrasonic-assisted supercritical anti-solvent (UA-SAS) technique was used to convert the commercial curcumin to uniform distributed nano-particles with the average size of 20 nm and yielding of 65%. The effect of process parameters including pressure, temperature, solution flow rate, and nature of organic solvent on the average particle size and yielding of products was investigated. The morphology, size, and crystalline pattern of processed curcumin particles were characterized by scanning electron microscopy, mean particle size analyzer, and X-ray diffraction. The champion specimen was achieved when the supercritical fluid was employed at 16 MPa and 35°C. Aqueous suspension of processed nano-curcumin can be stable for more than 2 months. In vitro dissolution experiments showed a remarkable enhancement in dissolution rate of UA-SAS-treated curcumin respecting to the commercial curcumin powder.

Publisher

Walter de Gruyter GmbH

Subject

Engineering (miscellaneous),Food Science,Biotechnology

Reference64 articles.

1. Curcumin self-assembly: a novel approach to improve curcumin delivery and its therapeutic efficacy in prostate cancer cells;Macromol Biosci,2010

2. Recent progress in studying curcumin and its nano-preparations for cancer therapy;Curr Pharm,2013

3. Polymeric coating of fluidizing nano-curcumin via anti-solvent supercritical method for sustained release;Ind Eng Chem Res,2014

4. Micronization of taxifolin by supercritical antisolvent process and evaluation of radical scavenging activity;Int J Mol Sci,2012

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3