Functional principal component analysis for near-infrared spectral data: a case study on Tricholoma matsutakeis

Author:

Li Haoran1,Pan Tianhong2ORCID,Li Yuqiang1,Chen Shan1,Li Guoquan3

Affiliation:

1. School of Electrical Information & Engineering , Jiangsu University , Zhenjiang , Jiangsu 212013 , China

2. School of Electrical Engineering & Automation , Anhui University , Hefei , Anhui 230601 , China

3. Jiangsu Hengshun Vinegar Industry Co., Ltd. , Zhenjiang 212043 , China

Abstract

Abstract Tricholoma matsutakeis (TM) is the most expensive edible fungi in China. Given its price and exclusivity, some dishonest merchants will sell adulterated TM by combining it with cheaper fungi in an attempt to earn more profits. This fraudulent behavior has broken food laws and violated consumer trust. Therefore, there is an urgent need to develop a rapid, accurate, and nondestructive tool to discriminate TM from other edible fungi. In this work, a novel detection algorithm combined with near-infrared spectroscopy (NIR) and functional principal component analysis (FPCA) is proposed. Firstly, the raw NIR data were pretreated by locally weighted scatterplot smoothing (LOWESS) and multiplication scatter correction (MSC). Then, FPCA was used to extract valuable information from the preprocessed NIR data. Then, a classifier was designed by using the least-squares support-vector machine (LS-SVM) to distinguish categories of edible fungi. Furthermore, the one-versus-one (OVO) strategy was included and the binary LS-SVM was extended to a multi-class classifier. The 166 samples of four varieties of fungi were used to validate the proposed method. The results show that the proposed method has great capability in near infrared spectra classification, and the average accurate of FPCA-LSSVM is 97.3% which is greater than that of PCA-LSSVM (93.5%).

Funder

National Key R&D Program of China

Key R&D Program of Jiangsu Province, China

Postgraduate Research & Practice Innovation Program of Jiangsu Province, China

Publisher

Walter de Gruyter GmbH

Subject

Engineering (miscellaneous),Food Science,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3