Author:
Ghaffari Ali,Mehdipour Ramin
Abstract
Abstract
In this study, a new approach for numerically modeling of an entire cabinet solar dryer is proposed. Collector, drying chamber and chimney are the three principle sections considered in the present modeling. The collector section containing a cover and an absorber plate is modeled applying energy and fluid flow equations to obtain temperature distribution inside the collector. Due to the non-linear behavior of the governing equations as well as variety of effective variables, an iterative method is employed for solution. Regarding the geometry complexity of the drying chamber along with the air compressibility (that in turn causes coupling of momentum and energy equations) drying chamber is simulated by CFD method. Chimney’s effect and effective parameters in suction are comprehensively considered in the present model. The numerical results are in line with experimental results which show that the model can be applied with certainty to employ the dryer for drying highly demanded and time-consuming products in a scientific, sanitary, and timely manner. The model is then optimized by adding some baffles to achieve higher efficiencies and accelerate the drying process.
Subject
Engineering (miscellaneous),Food Science,Biotechnology
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献