On the maximal operators of weighted Marcinkiewicz type means of two-dimensional Walsh–Fourier series

Author:

Nagy Károly1,Salim Mohamed2

Affiliation:

1. Institute of Mathematics and Computer Sciences , Eszterházy Károly Catholic University , Eger , Hungary ; and Department of Mathematical Sciences, College of Science, UAEU, Al Ain, United Arab Emirates

2. Department of Mathematical Sciences , College of Science , UAEU , Al Ain , United Arab Emirates

Abstract

Abstract Goginava proved that the maximal operator σ α , * {\sigma^{\alpha,*}} ( 0 < α < 1 {0<\alpha<1} ) of two-dimensional Marcinkiewicz type ( C , α ) {(C,\alpha)} means is bounded from the two-dimensional dyadic martingale Hardy space H p ( G 2 ) {H_{p}(G^{2})} to the space L p ( G 2 ) {L^{p}(G^{2})} for p > 2 2 + α {p>\frac{2}{2+\alpha}} . Moreover, he showed that assumption p > 2 2 + α {p>\frac{2}{2+\alpha}} is essential for the boundedness of the maximal operator σ α , * {\sigma^{\alpha,*}} . It was shown that at the point p 0 = 2 2 + α {p_{0}=\frac{2}{2+\alpha}} the maximal operator σ α , * {\sigma^{\alpha,*}} is bounded from the dyadic Hardy space H 2 / ( 2 + α ) ( G 2 ) {H_{2/(2+\alpha)}(G^{2})} to the space weak- L 2 / ( 2 + α ) ( G 2 ) {L^{2/(2+\alpha)}(G^{2})} . The main aim of this paper is to investigate the behaviour of the maximal operators of weighted Marcinkiewicz type σ α , * {\sigma^{\alpha,*}} means ( 0 < α < 1 {0<\alpha<1} ) in the endpoint case p 0 = 2 2 + α {p_{0}=\frac{2}{2+\alpha}} . In particular, the optimal condition on the weights is given which provides the boundedness from H 2 / ( 2 + α ) ( G 2 ) {H_{2/(2+\alpha)}(G^{2})} to L 2 / ( 2 + α ) ( G 2 ) {L^{2/(2+\alpha)}(G^{2})} . Furthermore, a strong summation theorem is stated for functions in the dyadic martingale Hardy space H 2 / ( 2 + α ) ( G 2 ) {H_{2/(2+\alpha)}(G^{2})} .

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3