Design method for curved stayed cable bridges deck directrices for different cable systems

Author:

Bardín Darío Galante1,Astiz Suárez Miguel A.2

Affiliation:

1. Innovación en el diseño de la ingeniería S.L ., Calle Altamirano 36 Bajo D, 28008 Madrid , Spain

2. School of Civil Engineering , Technical University of Madrid (UPM) , Campus Ciudad Universitaria, Calle del Prof. Aranguren, 3, 28040 Madrid , Spain

Abstract

Abstract In the specific case of curved cable-stayed bridges, the horizontal component of the load introduced by the stay cables on the deck is variable, concentric and dependent on the connection configuration between the tower and the cables, becoming a challenge in the design of these type of bridges. Hitherto, designers have dealt with this challenge in different ways, either by optimizing the position of the tower and its geometric characteristics, or by modifying the morphology of the stay cable system. This paper proposes the use of funicular and anti-funicular curves of the horizontal concentric load, introduced by the stay cables, to design the curved deck directrix, reducing lateral forces on the deck under the self-weight hypothesis. For the design of the deck directrix, two different formulations are considered: one discrete by means of summations and the other continuous by means of non-linear differential equations. Both formulations study the two possible signs of the axial force which will govern the design (funicular and anti-funicular curves). A least squares approximation is developed to facilitate the implementation of these formulations. The paper introduces a method to liberate the deck from its most important lateral loads, i.e., the concentric loads introduced by the stay cables. This way, it develops a deck dominated by axial forces instead of lateral ones (Bending moment with vertical axis, Mz, and lateral shear force, Vy), which can be critical for its design and decrease the stay-cable system efficiency. It explains, by different methods, how this directrices vary with different design decisions, so that the designer can develop the directrix that suits his design. Finally, two examples of directrices are given as a conclusion.

Publisher

Walter de Gruyter GmbH

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Aerospace Engineering,Building and Construction,Civil and Structural Engineering,Architecture,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3