Optimal Pixel-to-Shift Standard Deviation Ratio for Training 2-Layer Perceptron on Shifted 60 × 80 Images with Pixel Distortion in Classifying Shifting-Distorted Objects

Author:

Romanuke Vadim V.1

Affiliation:

1. Khmelnitskiy National University, Ukraine

Abstract

Abstract An optimization problem of classifying shifting-distorted objects is studied. The classifier is 2-layer perceptron, and the object model is monochrome 60 × 80 image. Based on the fact that previously the perceptron has successfully been attempted to classify shifted objects with a pixel-to-shift standard deviation ratio for training, the ratio is optimized. The optimization criterion is minimization of classification error percentage. A classifier trained under the found optimal ratio is optimized additionally. Then it effectively classifies shifting-distorted images, erring only in one case from eight takings at the maximal shift distortion. On average, classification error percentage appears less than 2.5 %. Thus, the optimized 2-layer perceptron outruns much slower neocognitron. And the found optimal ratio shall be nearly the same for other object classification problems, when the number of object features varies about 4800, and the number of classes is between two and three tens.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3