Elucidating the role of ZRF1 in monocyte-to-macrophage differentiation, cell proliferation and cell cycle in THP-1 cells

Author:

Kaymak Ozdemir Aysegul1ORCID,Basci Mahinur2ORCID

Affiliation:

1. Department of Biochemistry, Faculty of Pharmacy , Ege University , Izmir , Türkiye

2. Department of Biotechnology, Faculty of Science , Ege University , Izmir , Türkiye

Abstract

Abstract Objectives ZRF1 (Zuotin-related factor 1) is a versatile protein engaged in protein folding, gene regulation, cellular differentiation, DNA damage response, and immune system and cancer development regulation. This study investigates the role of ZRF1 in monocyte-to-macrophage transformation, and its effects on cell proliferation and the cell cycle. Methods We generated ZRF1-depleted THP-1 cells and induced macrophage differentiation using phorbol 12-myristate 13-acetate (PMA). Differentiation was assessed via microscopy and flow cytometry, while cell proliferation was quantified with the [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt] (MTS) assay, and the cell cycle was analyzed through flow cytometry using propidium iodide staining. Results ZRF1-depleted THP-1 cells exhibited notable morphological changes. Flow cytometry post-PMA treatment indicated these cells were smaller and less granular than controls. Proliferation rates of ZRF1-depleted monocytes and macrophages were significantly higher than controls, particularly over longer durations. Cell cycle analysis showed ZRF1 depletion notably affected the G0-G1 phase, highlighting its significant role in macrophage differentiation. Conclusions The findings provide important insights into ZRF1’s role in monocyte-to-macrophage differentiation and its impact on cell proliferation and the cell cycle. This research not only supports existing knowledge about ZRF1 but also enhances our understanding of its multifaceted roles in cellular processes.

Funder

Scientific and Technological Research Council of Turkey

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3