Improved modeling of Janus membrane considering the influence of hydrophilic layer characteristics

Author:

Sayed Noha M.12,Noby H.13,Thu Kyaw45,El-Shazly A. H.16

Affiliation:

1. Chemical and Petrochemicals Engineering Department , Egypt-Japan University of Science and Technology , New Borg AlArab City , Alexandria , Egypt

2. Chemical Engineering Department, Faculty of Engineering , Minia University , Minya , Egypt

3. Materials Engineering and Design, Faculty of Energy Engineering , Aswan University , Aswan , Egypt

4. Interdisciplinary Graduate School of Engineering Sciences , Kyushu University , Kasuga , Fukuoka , 816-8580 , Japan

5. Research Center for Next Generation Refrigerant Properties (NEXT-RP) , International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University , Nishi-ku , Fukuoka , 819-0367 , Japan

6. Chemical Engineering Department, Faculty of Engineering , Alexandria University , Alexandria , Egypt

Abstract

Abstract Some of the previous investigations neglect the mass transfer contribution of the hydrophilic layer for modeling the Janus membrane that is used for direct contact membrane distillation (DCMD). This work studies the impact of adding such resistance on the performance of the DCMD, especially on the temperature polarization coefficient (TPC), thermal efficiency, and permeate flux. The commercial software Ansys 2020 was used to describe the transport behavior through the Janus membrane. The bulk-flow model was employed to evaluate the permeate flow through the hydrophilic layer for the first time. Simulation results were compared with the experimental results from the literature for validating the model, and a satisfactory agreement was found. Results demonstrated that the permeate flux increased by about 61.3 % with changing the porosity of the hydrophilic layer from 0.5 to 0.9 for the membrane with the lowest hydrophilic layer thickness. Moreover, the thermal conductivities of both layers contribute significantly to the DCMD’s overall performance enhancement. Vapour flux might be enhanced by increasing the hydrophilic layer’s thermal conductivity while decreasing the hydrophobic layer’s thermal conductivity. Finally, the DCMD thermal efficiency was investigated, for the first time, in terms of both layer characteristics.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3