Open-Circuit Voltage Comes from Non-Equilibrium Thermodynamics

Author:

del Olmo Diego1,Pavelka Michal12ORCID,Kosek Juraj1

Affiliation:

1. Department of Chemical Engineering , 52735 University of Chemistry and Technology Prague , Technická 5 , Prague 6 , Czech Republic

2. Mathematical Institute, Faculty of Mathematics and Physics , Charles University in Prague , Sokolovská 83 , Prague , Czech Republic

Abstract

Abstract Originally derived by Walther Nernst more than a century ago, the Nernst equation for the open-circuit voltage is a cornerstone in the analysis of electrochemical systems. Unfortunately, the assumptions behind its derivation are often overlooked in the literature, leading to incorrect forms of the equation when applied to complex systems (for example, those with ion-exchange membranes or involving mixed potentials). Such flaws can be avoided by applying a correct thermodynamic derivation independently of the form in which the electrochemical reactions are written. The proper derivation of the Nernst equation becomes important, for instance, in modeling of vanadium redox flow batteries or zinc-air batteries. The rigorous path towards the Nernst equation derivation starts in non-equilibrium thermodynamics.

Funder

Horizon 2020 Framework Programme

Grantová Agentura České Republiky

Grantová Agentura, Univerzita Karlova

European Regional Development Fund

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Chemistry

Reference57 articles.

1. Maria Skyllas-Kazacos and Michael Kazacos, State of charge monitoring methods for vanadium redox flow battery control, J. Power Sources196 (2011), no. 20, 8822–8827.

2. Jianlu Zhang, Yanghua Tang, Chaojie Song, Jiujun Zhang and Haijiang Wang, PEM fuel cell open circuit voltage (OCV) in the temperature range of 23 °C to 120 °C, Journal of Power Sources163 (2006), no. 1 SPEC. ISS., 532–537.

3. W. Nernst and H. T. Tizard, Theoretical Chemistry from the Standpoint of Avogadro’s Rule & Thermodynamics, Macmillan and Company, Ltd., 1916.

4. L. D. Landau and E. M. Lifschitz, Statistical Physics, Number pt. 1 in Course of Theoretical Physics, Pergamon Press, 1969.

5. Michal Pavelka, Václav Klika and Miroslav Grmela, Multiscale Thermo-Dynamics, de Gruyter, Berlin, 2018.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3