A robust estimator of the proportional hazard transform for massive data

Author:

Omar Tami1,Abdelaziz Rassoul2ORCID,Hamid Ould Rouis1

Affiliation:

1. LAMDA-RO Laboratory , Department of Mathematics , University of Blida 1 , Blida , Algeria

2. GEE Laboratory , National Higher School of Hydraulics , Blida , Algeria

Abstract

Abstract In this paper, we explore the idea of grouping under the massive data framework, to propose a median-of-means non-parametric type estimator for the Proportional Hazard Transform (PHT), which has been widely used in finance and insurance. Under certain conditions on the growth rate of subgroups, the consistency and asymptotic normality of the proposed estimators are investigated. Furthermore, we construct a new method to test PHT based on the empirical likelihood method for the median in order to avoid any prior estimate of the variance structure for the proposed estimator, as it is difficult to estimate and often causes much inaccuracy. Numerical simulations and real-data analysis are designed to show the present estimator’s performance. The results confirm that the new put-forward estimator is quite robust with respect to outliers.

Publisher

Walter de Gruyter GmbH

Subject

Statistics, Probability and Uncertainty,Modeling and Simulation,Statistics and Probability

Reference19 articles.

1. H. Akaike, Information theory and an extension of the maximum likelihood principle, Second International Symposium on Information Theory (Tsahkadsor 1971), Akadémiai Kiadó, Budapest (1973), 267–281.

2. N. Alon, Y. Matias and M. Szegedy, The space complexity of approximating the frequency moments, J. Comput. Sci. 58 (2022), 137–147.

3. J. Beirlant, Y. Goegebeur, J. Teugels and J. Segers, Statistics of Extremes. Theory and Applications, Wiley Ser. Probab. Stat., John Wiley & Sons, Chichester, 2006.

4. E. H. Deme, S. Girard and A. Guillou, Reduced-bias estimator of the proportional hazard premium for heavy-tailed distributions, Insurance Math. Econom. 52 (2013), no. 3, 550–559.

5. F. Gao and S. Wang, Asymptotic behavior of the empirical conditional value-at-risk, Insurance Math. Econom. 49 (2011), no. 3, 345–352.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3