Energy visibility of a modeled photovoltaic/diesel generator set connected to the grid

Author:

Abbas Majid K.1,Hassan Qusay2,Jaszczur Marek3,Al-Sagar Zuhair S.1,Hussain Ali N.1,Hasan Ali4,Mohamad Abdulmajeed5

Affiliation:

1. Middle Technical University , Baghdad , Iraq

2. University of Diyala , Diyala , Iraq

3. AGH University of Science and Technology , Krakow , Poland

4. Al-Turath University College , Baghdad , Iraq

5. University of Calgary , Calgary , Canada

Abstract

Abstract The paper presents a technical and economic analysis for two energy systems (conventional and renewable) with grid connection. The investigation was carried out using an experimental measurement for the desired load and weather data (solar irradiance and ambient temperature), were 5.1 kWh the daily energy consumption as measured and 4.6 kWh/m2/day the annual average of the solar irradiance. The simulation process was done by using MATLAB and HOMER software at a 1 min time step resolution. The economic optimization objective presented for two energy system scenarios (i) photovoltaic/grid and (ii) diesel/grid, takes into account the economic aspects and component prices based on the Iraqi market and regulations. The diesel generator, very popular in rural areas, is designed to work during the same period as the photovoltaic system (only during day hours). The yearly operating hours were recorded at 4380 h/year, and energy generation was approx. 2349 kWh/year while fuel consumption was 1826 L/year. The results showed that the photovoltaic system in scenario (i) can generate about 7895 kWh, and for the diesel generator in scenario (ii), it can generate approximately 2346 kWh. Furthermore, for scenario (i) the levelized net present cost is $1079 and the cost of energy is about $0.035/kWh, while for scenario (ii) the levelized net present cost is $12,287 and the cost of energy is $0.598/kWh. The use of solar energy is highly recommended compared to diesel generators due to the lowest cost and delivery of energy to the grid. Furthermore, it can capture carbon dioxide by about 5295 kg/year.

Publisher

Walter de Gruyter GmbH

Subject

Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3