Methods for estimating lithium-ion battery state of charge for use in electric vehicles: a review

Author:

Gaga Ahmed1ORCID,Tannouche Adil2,Mehdaoui Youness1,El Hadadi Benachir1

Affiliation:

1. Research Laboratory of Physics and Engineers Sciences, Research Team in Embedded Systems Engineering, Automation, Signal, Telecommunications and Intelligent Materials, Sultan Moulay Slimane University , Béni Mellal , Morocco

2. Laboratory of Engineering and Applied Technology (LITA), Higher School of Technology (ESTBM), Sultan Moulay Slimane University , Béni Mellal , Morocco

Abstract

Abstract In recent decades, electric vehicles (EVs) have been garnering tremendous popularity because of their improved performance and efficiency, as well as new concerns about global warming, greenhouse gas emissions, and the depletion of fossil fuels. Extensive use of electric vehicles has already been seen in the automotive industry, especially because of the CO2 emissions and global environmental challenges they help with. A lot of attention has been paid to lithium-ion batteries for their numerous benefits, including lightweight, fast charging, high energy density, extended lifespan, and low self-discharge. This study covers the state of charge (SOC) estimation and management of the lithium-ion battery for sustainable future electric vehicle applications. The importance of adopting a lithium-ion battery management system (BMS) is shown, which guarantees a stable and safe operation and assesses the battery state of charge (SOC). According to the review, the SOC is an important parameter as it denotes the battery’s remaining charge and influences charging and discharging tactics. Additionally, it is shown that existing lithium-ion battery SOC has a positive effect on ensuring the safe and efficient operation of electric vehicles with their charging and discharging capacities. Despite these hurdles, batteries still have certain limitations, such as complex electro-chemical reactions, decreased performance, and inaccuracies in enhancing battery performance and life. This paper thoroughly reviews the approaches used to estimate or capture (SOC) parameters by focusing on the calculation model or algorithm, advantages, disadvantages, and estimation error. It describes a number of aspects and obstacles that have been identified and suggestions for their use in the development of BMS and for estimating SOC in future EV applications are offered. The rising attempts to improve the high-tech future EV applications, SOC calculation method, and energy management system will be enhanced by this review’s highlight insights.

Publisher

Walter de Gruyter GmbH

Subject

Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3