The comparison of triboelectric power generated by electron-donating polymers KAPTON and PDMS in contact with PET polymer

Author:

Keykha Mohsen1,Sheikholeslami T. Fanaei2

Affiliation:

1. Department of Electrical Engineering , University of Sistan and Baluchestan , Zahedan , Iran

2. Department of Mechanical Engineering (Mechatronics) , University of Sistan and Baluchestan , Zahedan , Iran

Abstract

Abstract The Triboelectric nanogenerators (TENGs) are Fabricated by contact between two surfaces of different materials and convert of electric loads between them. In such structures, the two contacting layers should be radically different in terms of their electric property so that one of the layers could induce positive electrical charge while the other induces a negative charge. The application of force on and friction between the two layers induce positive and negative charges. Through the electrodes in external load, the electrical charges flow as electric current. In the present study, TEGN structures fabricated of polyethylene terephthalate polymers (PET) act as electron acceptor while Polyamide (KAPTON) and polydimethylsiloxane (PDMS) act as electron donator. The resulting outputs are compared consequently. Considering the fact that the two materials are relatively identical in terms of electron donation as they are in contact with PET, the generators fabricated of KAPTON could generate 400% more power under identical conditions. Therefore, one may conclude that KAPTON could be more suitable for development of self-power system as they are more available and more environmentally compatible.

Publisher

Walter de Gruyter GmbH

Subject

Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3