Space-Time Unit-Level EBLUP for Large Data Sets

Author:

D’Aló Michele1,Falorsi Stefano1,Solari Fabrizio1

Affiliation:

1. Italian National Statistical Institute, via Cesare Balbo 16, 00184 Rome, Italy

Abstract

Abstract Most important large-scale surveys carried out by national statistical institutes are the repeated survey type, typically intended to produce estimates for several parameters of the whole population, as well as parameters related to some subpopulations. Small area estimation techniques are becoming more and more important for the production of official statistics where direct estimators are not able to produce reliable estimates. In order to exploit data from different survey cycles, unit-level linear mixed models with area and time random effects can be considered. However, the large amount of data to be processed may cause computational problems. To overcome the computational issues, a reformulation of predictors and the correspondent mean cross product estimator is given. The R code based on the new formulation enables the elaboration of about 7.2 millions of data records in a matter of minutes.

Publisher

Walter de Gruyter GmbH

Reference22 articles.

1. Battese, G.E., R.M. Harter, and W.A. Fuller. 1988. “An Error Components Model for Prediction of County Crop Areas Using Survey and Satellite Data.” Journal of American Statistical Association 83: 28-36. Doi: http://dx.doi.org/10.1080/01621459.1988.10478561.

2. Boonstra, H., B. Buelens, and M. Smeets. 2007. “Estimation of Municipal Unemployment Fractions - A Simulation Study Comparing Different Small Area Estimators.” Internal report, BPA-no. DMK-DMH-2007-04-20-HBTA, Herleen: Statistics Netherlands.

3. Cressie, N. 1992. “REML Estimation in Empirical Bayes Smoothing of Census Undercount.” Survey Methodology 18: 75-94.

4. Cressie, N. 1993. Statistics for Spatial Data. New York: Wiley.

5. D’Aló, M., L. Di Consiglio, S. Falorsi, M.G. Ranalli, and F. Solari. 2012. “Use of Spatial Information in Small Area Models for Unemployment Rate Estimation at Sub- Provincial Areas in Italy.” Journal of the Indian Society of Agricultural Statistics 66: 43-54.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3