Group Theoretical Analysis and Invariant Solutions for Unsteady Flow of a Fourth-Grade Fluid over an Infinite Plate Undergoing Impulsive Motion in a Darcy Porous Medium

Author:

Aziz Taha,Fatima Aeeman,Aziz Asim1,Mahomed Fazal M.2

Affiliation:

1. NUST College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Rawalpindi 46070, Pakistan

2. School of Computational and Applied Mathematics, DST-NRF Centre of Excellence in Mathematical and Statistical Sciences, Differential Equations, Continuum Mechanics and Applications, University of the Witwatersrand, Johannesburg, Wits 2050, South Africa

Abstract

Abstract In this study, an incompressible time-dependent flow of a fourth-grade fluid in a porous half space is investigated. The flow is generated due to the motion of the flat rigid plate in its own plane with an impulsive velocity. The partial differential equation governing the motion is reduced to ordinary differential equations by means of the Lie group theoretic analysis. A complete group analysis is performed for the governing nonlinear partial differential equation to deduce all possible Lie point symmetries. One-dimensional optimal systems of subalgebras are also obtained, which give all possibilities for classifying meaningful solutions in using the Lie group analysis. The conditional symmetry approach is also utilised to solve the governing model. Various new classes of group-invariant solutions are developed for the model problem. Travelling wave solutions, steady-state solution, and conditional symmetry solutions are obtained as closed-form exponential functions. The influence of pertinent parameters on the fluid motion is graphically underlined and discussed.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3