Unidirectional Excitation of Graphene Plasmon in Attenuated Total Reflection (ATR) Configuration

Author:

Dai Wei1,Wu Yue-Chao2,Liu Fang-Li3

Affiliation:

1. School of Physics and Mechanical and Electrical Engineering, Hubei University of Education, Wuhan 430205, China

2. Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore

3. Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA

Abstract

Abstract Graphene plasmon has been attracting interests from both theoretical and experimental research due to its gate tunability and potential applications in the terahertz frequency range. Here, we propose an effective scheme to unidirectionally excite the graphene plasmon by exploiting magneto-optical materials in the famous attenuated total reflection (ATR) configuration. We show that the graphene plasmon dispersion relation in such a device is asymmetric in different exciting directions, thus making it possible to couple the incident light unidirectionally to the propagating plasmon. The split of absorption spectrum of graphene clearly indicates that under a magnetic field for one single frequency, graphene plasmon can only be excited in one direction. The possible gate tunablity of excitation direction and the further application of the proposed scheme, such as optical isolator, also are discussed.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3