On Generating Integrable Dynamical Systems in 1+1 and 2+1 Dimensions by Using Semisimple Lie Algebras

Author:

Zhang Yufeng1,Tam Honwah2,Wu Lixin3

Affiliation:

1. College of Sciences, China University of Mining and Technology, Xuzhou 221116, P.R. China

2. Department of Computer Science, Hong Kong Baptist University, Hong Kong, P. R. China

3. School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, P. R. China

Abstract

Abstract We deduce a set of integrable equations under the framework of zero curvature equations and obtain two sets of integrable soliton equations, which can be reduced to some new integrable equations including the generalised nonlinear Schrödinger (NLS) equation. Under the case where the isospectral functions are one-order polynomials in the parameter λ, we generate a set of rational integrable equations, which are reduced to the loop soliton equation. Under the case where the derivative λ t of the spectral parameter λ is a quadratic algebraic curve in λ, we derive a set of variable-coefficient integrable equations. In addition, we discretise a pair of isospectral problems introduced through the Lie algebra given by us for which a set of new semi-discrete nonlinear equations are available; furthermore, the semi-discrete MKdV equation and the Hirota lattice equation are followed to produce, respectively. Finally, we apply the Lie algebra to introduce a set of operator Lax pairs with an operator, and then through the Tu scheme and the binomial-residue representation method proposed by us, we generate a 2+1-dimensional integrable hierarchy of evolution equations, which reduces to a generalised 2+1-dimensional Davey-Stewartson (DS) equation.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3