Enhancing clinical reasoning with Chat Generative Pre-trained Transformer: a practical guide

Author:

Hirosawa Takanobu1ORCID,Shimizu Taro1

Affiliation:

1. Department of Diagnostic and Generalist Medicine , Dokkyo Medical University , Tochigi , Japan

Abstract

AbstractObjectivesThis study aimed to elucidate effective methodologies for utilizing the generative artificial intelligence (AI) system, namely the Chat Generative Pre-trained Transformer (ChatGPT), in improving clinical reasoning abilities among clinicians.MethodsWe conducted a comprehensive exploration of the capabilities of ChatGPT, emphasizing two main areas: (1) efficient utilization of ChatGPT, with a focus on application and language selection, input methodology, and output verification; and (2) specific strategies to bolster clinical reasoning using ChatGPT, including self-learning via simulated clinical case creation and engagement with published case reports.ResultsEffective AI-based clinical reasoning development requires a clear delineation of both system roles and user needs. All outputs from the system necessitate rigorous verification against credible medical resources. When used in self-learning scenarios, capabilities of ChatGPT in clinical case creation notably enhanced disease comprehension.ConclusionsThe efficient use of generative AIs, as exemplified by ChatGPT, can impressively enhance clinical reasoning among medical professionals. Adopting these cutting-edge tools promises a bright future for continuous advancements in clinicians’ diagnostic skills, heralding a transformative era in digital healthcare.

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry (medical),Clinical Biochemistry,Public Health, Environmental and Occupational Health,Health Policy,Medicine (miscellaneous)

Reference10 articles.

1. Patrizio, A. Google bard: TechTarget; 2023. Available from: https://www.techtarget.com/searchenterpriseai/definition/Google-Bard.

2. Aydın, Ö. Google bard generated literature review: metaverse. Available from: SSRN. 2023.

3. Touvron, H, Lavril, T, Izacard, G, Martinet, X, Lachaux, M-A, Lacroix, T, et al.. Llama: open and efficient foundation language models. arXiv preprint arXiv:230213971 2023.

4. OpenAI. GPT-4 Technical report 2023 March 01, 2023. [arXiv:2303.08774 p.].

5. Kassirer, JR. Clinical problem-solving—a new feature in the Journal. N Engl J Med 1992;326:60–1. https://doi.org/10.1056/nejm199201023260112.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3