Affiliation:
1. Department of Electronics Engineering, Catholic University of Daegu, Hayang, Gyongsan, Gyungbuk 712-702, South Korea
Abstract
The modulational instability of the higher-order nonlinear Schrödinger equation with fourth-order dispersion and quintic nonlinear terms, describing the propagation of extremely short pulses, is investigated. Several types of gains by modulational instability are shown to exist in both the anomalous and normal dispersion regimes depending on the sign and strength of the higher-order nonlinear terms. The evolution of the modulational instability in both the anomalous and normal dispersion regimes is numerically investigated and the effects of the higher-order dispersion and nonlinear terms on the formation and evolution of the solitons induced by modulational instability are studied. - PACS numbers: 42.65.Tg, 42.81Dp, 42.65Sf
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献