Affiliation:
1. 1. Institut für Theoretische Physik der Universität Hamburg
Abstract
It is shown that the trajectories of an isometry group admit orthogonal surfaces if the sub-group of stability leaves no vector in the tangent space of the trajectories fixed. A necessary and sufficient condition is given that the trajectories of an Abelian group admit orthogonal surfaces.
In spacetimes which admit an Abelian G2 of isometries, the trajectories admit orthogonal 2-surfaces if a timelike congruence exists with the following properties: the curves lie in the trajectories and are invariant under G2; ωα and üα are linearly independent and orthogonal to the trajectories.
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献