Analyzing the effect of notch geometry on the impact strength of 3D-printed specimens

Author:

Solouki Ali1,Aliha Mohammad Reza Mohammad23,Makui Ahmad1ORCID,Choupani Naghdali3

Affiliation:

1. Department of Industrial Engineering , Iran University of Science and Technology , Tehran , Iran

2. Welding and Joining Research Center, School of Industrial Engineering , Iran University of Science and Technology (IUST) , Narmak, 16846-13114 Tehran , Iran

3. Department of Mechanical Engineering , Gebze Technical University , Kocaeli , 41400 , Turkiye

Abstract

Abstract Additive manufacturing (AM) using 3D printing techniques such as fused deposition modeling (FDM) has now found much attention, not only in prototyping but also in industrial production. Indeed, the 3D-printed components are now widely used as structural elements in many applications such as biomechanical engineering (dentistry, orthopedics, bio implants, etc.) and therefore, full understanding of their strength, load carrying capacity, improving the mechanical behaviors, and manufacturing process is an important issue. Charpy impact experiments offer information on the strength of a material to sudden failure where a sharp stress raiser or notch is present. In addition to providing information not available from any other simple mechanical experiments, the impact resistance tests are quick and inexpensive, so they are often used. In this research, impact strength experiments were conducted at room temperatures on rectangular samples containing three different notches including V-notch, U-notch, and Keyhole-notch to determine impact resistance of the 3D-printed polylactic acid (PLA) components. The capability of multiple comparison tests for analysis of variance like ANOVA, Tukey, and Fisher methods for prediction of impact resistance in the tested specimens were also investigated. The samples containing Keyhole notch showed highest Charpy impact resistance. In contrary, V-notched sample provided the lowest impact energy. All the employed statistical analyses reveal that the notch type has meaningful influence on the impact energy of 3D-printed parts.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3