Indentation creep behavior of Fe–8Ni–xZr oxide dispersion strengthened alloys

Author:

Tekin Mustafa1ORCID,Muhaffel Faiz2ORCID,Kotan Hasan3ORCID,Baydoğan Murat2ORCID

Affiliation:

1. Department of Metallurgical and Materials Engineering , KTO Karatay University , 42020 Karatay , Konya , Türkiye

2. Department of Metallurgical and Materials Engineering , Istanbul Technical University , 34469 Maslak , İstanbul , Türkiye

3. Department of Metallurgical and Materials Engineering , Bursa Technical University , 16310 Yıldırım , Bursa , Türkiye

Abstract

Abstract This study was conducted to understand the creep behavior of two oxide dispersion strengthened alloys containing Zr as the alloying addition by performing indentation creep tests at room temperature. The oxide dispersion strengthened alloys were Fe–8Ni–xZr (x = 1 and 4 at.%, i.e., Zr-1 and Zr-4 alloys, respectively), which had been previously fabricated by mechanical alloying; followed by consolidation via equal channel angular extrusion at 1000 °C. The indentation tests were conducted under a maximum load of 100 mN with the loading rates at 300 and 400 mN min−1. The hardness was calculated by the Oliver–Pharr method, and the creep properties, such as the creep displacement, creep strain rate, creep stress, and stress exponent n, were determined. The results showed that the Zr-4 alloy was harder than the Zr-1 alloy. However, the creep resistance of the Zr-1 alloy was better than that of the Zr-4 alloy. It was further demonstrated that both the hardness and creep resistance depended on the loading rate. Moreover, a possible creep mechanism was proposed. Although the tests were performed at room temperature, they can provide insight into the effect of an oxide dispersion strengthened alloys microstructure on creep at higher temperatures.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3