A novel hybrid Fick’s law algorithm-quasi oppositional–based learning algorithm for solving constrained mechanical design problems

Author:

Mehta Pranav1,Yildiz Betül Sultan2ORCID,Sait Sadiq M.3,Yildiz Ali Riza4

Affiliation:

1. Department of Mechanical Engineering , Dharmsinh Desai University , Nadiad , Gujarat 387001 , India

2. Deaprtment of Mechanical Engineering , Bursa Uludag University, Görükle Bursa , Bursa 16059 , Türkiye

3. King Fahd University of Petroleum & Minerals , Dhahran , Saudi Arabia

4. Department of Mechanical Engineering , Bursa Uludag University, Uludağ University , Görükle Bursa , Bursa 16059 , Türkiye

Abstract

Abstract In this article, a recently developed physics-based Fick’s law optimization algorithm is utilized to solve engineering optimization challenges. The performance of the algorithm is further improved by incorporating quasi-oppositional–based techniques at the programming level. The modified algorithm was applied to optimize the rolling element bearing system, robot gripper, planetary gear system, and hydrostatic thrust bearing, along with shape optimization of the vehicle bracket system. Accordingly, the algorithm realizes promising statistical results compared to the rest of the well-known algorithms. Furthermore, the required number of iterations was comparatively less required to attain the global optimum solution. Moreover, deviations in the results were the least even when other optimizers provided better or more competitive results. This being said that this optimization algorithm can be adopted for a critical and wide range of industrial and real-world challenges optimization.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3