Oxidative Ammonolysis of Technical Lignins. Part 1. Kinetics of the Reaction under Isothermal Condition at 130°C

Author:

Capanema Ewellyn A.,Balakshin Mikhail Yu.,Chen Chen-Loung,Gratzl Josef S.,Kirkman Adrianna G.

Abstract

Summary Investigations were conducted on the oxidative ammonolysis of REPAP organosolv lignin at 130 °C in 0.8M NH4OH solution under oxygen pressure of 12 bar. The lignin was completely solubilized at the reaction time of 165 min. The kinetics of the nitrogen incorporation consists of two phases. The first phase is up to the reaction time of approximately 35 min including 15 min heating up period. The rate of nitrogen incorporation in the first phase is 2.3 times higher than that in the second phase: κ1 = 4.58 × 10−4 s−1 versus κ2 = 1.90 × 10−4 s−1. The oxygen uptake and CO2 formation in the reaction is rather high. When the nitrogen incorporation was ceased after reaction for 255 minutes, more than 4 moles of oxygen/C9-unit of lignin were consumed and approximately 1.5 moles of carbon dioxide/C9-unit of lignin were released. In addition, extensive O-demethylation of methoxyl groups occurred. The molar ratio of the nitrogen incorporation to the methoxyl group eliminated is approximately 1.4 and 0.7 for the soluble and insoluble N-modified lignins, respectively. Structural analyses of the soluble N-modified lignins by FTIR and 1H NMR spectroscopic techniques showed only quantitative differences in the spectra obtained at different reaction times. This indicates that the reaction pathways do not change in the course of the oxidative ammonolysis. Possible reaction mechanisms of the oxidative ammonolysis are discussed on the basis of the experimental data.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3