Author:
Capanema Ewellyn A.,Balakshin Mikhail Yu.,Chen Chen-Loung,Gratzl Josef S.,Kirkman Adrianna G.
Abstract
Summary
Investigations were conducted on the oxidative ammonolysis of REPAP organosolv lignin at 130 °C in 0.8M NH4OH solution under oxygen pressure of 12 bar. The lignin was completely solubilized at the reaction time of 165 min. The kinetics of the nitrogen incorporation consists of two phases. The first phase is up to the reaction time of approximately 35 min including 15 min heating up period. The rate of nitrogen incorporation in the first phase is 2.3 times higher than that in the second phase: κ1 = 4.58 × 10−4 s−1
versus κ2 = 1.90 × 10−4 s−1. The oxygen uptake and CO2 formation in the reaction is rather high. When the nitrogen incorporation was ceased after reaction for 255 minutes, more than 4 moles of oxygen/C9-unit of lignin were consumed and approximately 1.5 moles of carbon dioxide/C9-unit of lignin were released. In addition, extensive O-demethylation of methoxyl groups occurred. The molar ratio of the nitrogen incorporation to the methoxyl group eliminated is approximately 1.4 and 0.7 for the soluble and insoluble N-modified lignins, respectively. Structural analyses of the soluble N-modified lignins by FTIR and 1H NMR spectroscopic techniques showed only quantitative differences in the spectra obtained at different reaction times. This indicates that the reaction pathways do not change in the course of the oxidative ammonolysis. Possible reaction mechanisms of the oxidative ammonolysis are discussed on the basis of the experimental data.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献