Meta-analytic framework for modeling genetic coexpression dynamics

Author:

Kinzy Tyler G.,Starr Timothy K.,Tseng George C.,Ho Yen-Yi

Abstract

Abstract Methods for exploring genetic interactions have been developed in an attempt to move beyond single gene analyses. Because biological molecules frequently participate in different processes under various cellular conditions, investigating the changes in gene coexpression patterns under various biological conditions could reveal important regulatory mechanisms. One of the methods for capturing gene coexpression dynamics, named liquid association (LA), quantifies the relationship where the coexpression between two genes is modulated by a third “coordinator” gene. This LA measure offers a natural framework for studying gene coexpression changes and has been applied increasingly to study regulatory networks among genes. With a wealth of publicly available gene expression data, there is a need to develop a meta-analytic framework for LA analysis. In this paper, we incorporated mixed effects when modeling correlation to account for between-studies heterogeneity. For statistical inference about LA, we developed a Markov chain Monte Carlo (MCMC) estimation procedure through a Bayesian hierarchical framework. We evaluated the proposed methods in a set of simulations and illustrated their use in two collections of experimental data sets. The first data set combined 10 pancreatic ductal adenocarcinoma gene expression studies to determine the role of possible coordinator gene USP9X in the Hippo pathway. The second experimental data set consisted of 907 gene expression microarray Escherichia coli experiments from multiple studies publicly available through the Many Microbe Microarray Database website (http://m3d.bu.edu/) and examined genes that coexpress with serA in the presence of coordinator gene Lrp.

Publisher

Walter de Gruyter GmbH

Subject

Computational Mathematics,Genetics,Molecular Biology,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3