Choice of baseline hazards in joint modeling of longitudinal and time-to-event cancer survival data

Author:

Hari Anand1,Jinto Edakkalathoor George1,Dennis Divya1,Krishna Kumarapillai Mohanan Nair Jagathnath1,George Preethi S.1,Roshni Sivasevan2,Mathew Aleyamma1

Affiliation:

1. 29384 Division of Cancer Epidemiology and Biostatistics, Regional Cancer Centre , Thiruvananthapuram , Kerala , India

2. Department of Radiation Oncology , 29384 Regional Cancer Centre , Thiruvananthapuram , Kerala , India

Abstract

Abstract Longitudinal time-to-event analysis is a statistical method to analyze data where covariates are measured repeatedly. In survival studies, the risk for an event is estimated using Cox-proportional hazard model or extended Cox-model for exogenous time-dependent covariates. However, these models are inappropriate for endogenous time-dependent covariates like longitudinally measured biomarkers, Carcinoembryonic Antigen (CEA). Joint models that can simultaneously model the longitudinal covariates and time-to-event data have been proposed as an alternative. The present study highlights the importance of choosing the baseline hazards to get more accurate risk estimation. The study used colon cancer patient data to illustrate and compare four different joint models which differs based on the choice of baseline hazards [piecewise-constant Gauss–Hermite (GH), piecewise-constant pseudo-adaptive GH, Weibull Accelerated Failure time model with GH & B-spline GH]. We conducted simulation study to assess the model consistency with varying sample size (N = 100, 250, 500) and censoring (20 %, 50 %, 70 %) proportions. In colon cancer patient data, based on Akaike information criteria (AIC) and Bayesian information criteria (BIC), piecewise-constant pseudo-adaptive GH was found to be the best fitted model. Despite differences in model fit, the hazards obtained from the four models were similar. The study identified composite stage as a prognostic factor for time-to-event and the longitudinal outcome, CEA as a dynamic predictor for overall survival in colon cancer patients. Based on the simulation study Piecewise-PH-aGH was found to be the best model with least AIC and BIC values, and highest coverage probability(CP). While the Bias, and RMSE for all the models showed a competitive performance. However, Piecewise-PH-aGH has shown least bias and RMSE in most of the combinations and has taken the shortest computation time, which shows its computational efficiency. This study is the first of its kind to discuss on the choice of baseline hazards.

Funder

Indian council for Medical research-Department of Health Research, Government of India

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3