A smoothed EM-algorithm for DNA methylation profiles from sequencing-based methods in cell lines or for a single cell type

Author:

Lakhal-Chaieb Lajmi,Greenwood Celia M.T.,Ouhourane Mohamed,Zhao Kaiqiong,Abdous Belkacem,Oualkacha Karim

Abstract

AbstractWe consider the assessment of DNA methylation profiles for sequencing-derived data from a single cell type or from cell lines. We derive a kernel smoothed EM-algorithm, capable of analyzing an entire chromosome at once, and to simultaneously correct for experimental errors arising from either the pre-treatment steps or from the sequencing stage and to take into account spatial correlations between DNA methylation profiles at neighbouring CpG sites. The outcomes of our algorithm are then used to (i) call the true methylation status at each CpG site, (ii) provide accurate smoothed estimates of DNA methylation levels, and (iii) detect differentially methylated regions. Simulations show that the proposed methodology outperforms existing analysis methods that either ignore the correlation between DNA methylation profiles at neighbouring CpG sites or do not correct for errors. The use of the proposed inference procedure is illustrated through the analysis of a publicly available data set from a cell line of induced pluripotent H9 human embryonic stem cells and also a data set where methylation measures were obtained for a small genomic region in three different immune cell types separated from whole blood.

Publisher

Walter de Gruyter GmbH

Subject

Computational Mathematics,Genetics,Molecular Biology,Statistics and Probability

Reference76 articles.

1. Estimation of allocation rates in a cluster analysis context;J. Am. Stat. Assoc,1985

2. Modeling, simulation and analysis of methylation profiles from reduced representation bisulfite sequencing experiments;Stat. Appli. Genet. Mol. Biol,2013

3. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells;Nature,2011

4. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells;Nature,2011

5. Single-Cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics;Cell Reports,2015

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3