A weighted empirical Bayes risk prediction model using multiple traits

Author:

Li Gengxin1,Hou Lin2,Liu Xiaoyu3,Wu Cen4

Affiliation:

1. Department of Mathematics and Statistics, University of Michigan Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA

2. Center for Statistical Science, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100084, China

3. Department of Mathematics and Statistics, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA

4. Department of Statistics, Kansas State University, 1116 Mid-Campus Drive N., Manhattan, KS 66506, USA

Abstract

AbstractWith rapid advances in high-throughput sequencing technology, millions of single-nucleotide variants (SNVs) can be simultaneously genotyped in a sequencing study. These SNVs residing in functional genomic regions such as exons may play a crucial role in biological process of the body. In particular, non-synonymous SNVs are closely related to the protein sequence and its function, which are important in understanding the biological mechanism of sequence evolution. Although statistically challenging, models incorporating such SNV annotation information can improve the estimation of genetic effects, and multiple responses may further strengthen the signals of these variants on the assessment of disease risk. In this work, we develop a new weighted empirical Bayes method to integrate SNV annotation information in a multi-trait design. The performance of this proposed model is evaluated in simulation as well as a real sequencing data; thus, the proposed method shows improved prediction accuracy compared to other approaches.

Funder

NIH

European Research Council

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Computational Mathematics,Genetics,Molecular Biology,Statistics and Probability

Reference88 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Bayesian Group Sparse Canonical Correlation Analysis Method for Brain Imaging Genomics;2024 IEEE International Symposium on Biomedical Imaging (ISBI);2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3