Combining dependent p-values by gamma distributions

Author:

Chien Li-Chu1

Affiliation:

1. Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung, Taiwan

Abstract

AbstractCombining correlated p-values from multiple hypothesis testing is a most frequently used method for integrating information in genetic and genomic data analysis. However, most existing methods for combining independent p-values from individual component problems into a single unified p-value are unsuitable for the correlational structure among p-values from multiple hypothesis testing. Although some existing p-value combination methods had been modified to overcome the potential limitations, there is no uniformly most powerful method for combining correlated p-values in genetic data analysis. Therefore, providing a p-value combination method that can robustly control type I errors and keep the good power rates is necessary. In this paper, we propose an empirical method based on the gamma distribution (EMGD) for combining dependent p-values from multiple hypothesis testing. The proposed test, EMGD, allows for flexible accommodating the highly correlated p-values from the multiple hypothesis testing into a unified p-value for examining the combined hypothesis that we are interested in. The EMGD retains the robustness character of the empirical Brown’s method (EBM) for pooling the dependent p-values from multiple hypothesis testing. Moreover, the EMGD keeps the character of the method based on the gamma distribution that simultaneously retains the advantages of the z-transform test and the gamma-transform test for combining dependent p-values from multiple statistical tests. The two characters lead to the EMGD that can keep the robust power for combining dependent p-values from multiple hypothesis testing. The performance of the proposed method EMGD is illustrated with simulations and real data applications by comparing with the existing methods, such as Kost and McDermott’s method, the EBM and the harmonic mean p-value method.

Funder

Ministry of Science and Technology

Publisher

Walter de Gruyter GmbH

Subject

Computational Mathematics,Genetics,Molecular Biology,Statistics and Probability

Reference48 articles.

1. A systematic comparison of methods for combining p-values from independent tests;Comput. Stat. Data Anal.,2004b

2. Combining independent, weighted p-values: achieving computational stability by a systematic expansion with controllable accuracy;PLoS One,2011

3. A method for combining non-independent, one-sided tests of significance;Biometrics,1975

4. A modified generalized Fisher method for combining probabilities from dependent tests;Front. Genet.,2014

5. Integrating p-values for genetic and genomic data analysis;J. Biometrics Biostat.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3