In silico ADMET, molecular docking study, and nano Sb2O3-catalyzed microwave-mediated synthesis of new α-aminophosphonates as potential anti-diabetic agents

Author:

Altaff Shaik Mohammad1,Rajeswari Tiruveedula Raja2,Subramanyam Chennamsetty3

Affiliation:

1. Department of Chemistry, S.N. Government Junior College , Chebrole , AP-522212 , India

2. Sri A.S.N.M. Government College (Autonomous) , Palakol , AP-534260 , India

3. Department of Chemistry, Bapatla Engineering College , Bapatla , AP-522101 , India

Abstract

Abstract An efficient and greener method is developed for the synthesis of α-aminophosphonates via Kabachnik–Fields reaction in solvent free condition using microwave irradiation technique. For all of the compounds, an in silico ADMET and molecular docking study was conducted to get insight on the drug likeliness behavior as well as their ability to block the enzyme α-amylase. The compounds with significant binding affinity and significant pharmacokinetic characteristics were produced. The newly produced compounds were spectroscopically analyzed to confirm their structure, and in vitro α-amylase inhibitory activity was also tested for all of them. The compounds 8j (half-maximal inhibitory concentration (IC50), 100.5 ± 0.2 μg·mL−1) showed better inhibitory activity than the reference drug, acarbose. The compounds 8d (IC50, 108.6 ± 0.2 μg·mL−1), 8g (IC50, 110.9 ± 0.3 μg·mL−1), 8h (IC50, 115.0 ± 0.1 μg·mL−1), and 8f (IC50, 118.9 ± 0.2 μg·mL−1) have been reported to exhibit significant inhibition toward the target enzyme. All the leftover compounds displayed modest to excellent inhibition through IC50 values in the range from 122.3 ± 0.3 to 154.3 ± 0.6 μg·mL−1 while comparing with the reference drug, Acarbose (IC50, 103.2 ± 0.7 μg·mL−1). The results disclosed that the majority of these compounds exhibit significant α-amylase inhibitory activity.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Condensed Matter Physics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3