Integrated Precipitable Water from GPS Observations and CIMEL Sunphotometer Measurements at CGO Belsk
Author:
Kruczyk Michał1, Liwosz Tomasz1, Pietruczuk Aleksander2
Affiliation:
1. Department of Geodesy and Geodetic Astronomy, Faculty of Geodesy and Cartography, Warsaw University of Technology, Pl. Politechniki 1, 00-661, Warsaw , Poland 2. Institute of Geophysics, Polish Academy of Sciences, ul. Księcia Janusza 64, 01-452 Warsaw , Poland
Abstract
Abstract
This paper describes results of integrated precipitable water co-located measurements from two techniques: GPS solution and CIMEL-318 sunphotometer. Integrated Precipitable Water (IPW) is an important meteorological parameter and is derived from GPS tropospheric solutions for GPS station at Central Geophysical Observatory (CGO), Polish Academy of Sciences (PAS), Belsk and compared with sunphotometer (CIMEL-318 device by Cimel Electronique) data provided by Aerosol Robotic Network (AERONET). Two dedicated and independent GPS solutions: network solution in the sub-network of European Permanent Network (EPN) and precise point positioning solution have been made to obtain tropospheric delays. The quality of dedicated tropospheric solutions has been verified by comparison with EPN tropospheric combined product. Several IPW comparisons and analyses revealed systematic difference between techniques (difference RMS is over 1 mm). IPW bias changes with season: annual close to 1 mm IPW (and semi-annual term also present). IPW bias is a function of atmospheric temperature. Probable cause of this systematic deficiency in solar photometry as IPW retrieval technique is a change of optical filter characteristics in CIMEL.
Publisher
Walter de Gruyter GmbH
Reference34 articles.
1. Alexandrov, M.A., Schmid, B., Turner, D.D., Cairns, B., Oinas, V., Lacis, A.A., Gutman, S.I., Westwater, E.R., A. Smirnov & J. Eilers (2009). Columnar water vapor retrievals from MFRSR data, J.Geophys.Res., 114, D02306, DOI:10.1029/2008JD010543 2. Bevis, M., Businger, S., Herring, T., Rocken, C., Anthes, R., & R. Ware (1992). GPS Meteorology: Remote Sensing of Atmospheric Water Vapour using the Global Positioning System, J. Geophys. Res., 97, pp. 15 787-15 801 3. Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R.A., Rocken, C., & R. Ware (1994). GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water, Journal of Applied Meteorology, Vol. 33, pp. 379-386 4. Böhm, J. & Schuh, H., (2013). Atmospheric Effects in Space Geodesy, Springer Heidelberg New York Dordrecht London, DOI:10.1007/978-3-642-36932-2 5. Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers, A. E. & G. Elgered (1985). Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length, Radio Science, 20, pp. 1593-1607
|
|